详细信息
非凸性条件下二阶微分包含解的存在性
Solution of Three-point Boundary Value Problems for Second Order Differential Inclusions
文献类型:期刊文献
中文题名:非凸性条件下二阶微分包含解的存在性
英文题名:Solution of Three-point Boundary Value Problems for Second Order Differential Inclusions
作者:翟新平[1]
第一作者:翟新平
机构:[1]定西师范高等专科学校数学系,甘肃定西743000
第一机构:甘肃中医药大学定西校区
年份:2008
卷号:13
期号:5
起止页码:9
中文期刊名:甘肃高师学报
外文期刊名:Journal of Gansu Normal Colleges
收录:国家哲学社会科学学术期刊数据库
语种:中文
中文关键词:多值微分方程;存在性;Bressan-Colombo连接选择定理;Schauder不动点定理
外文关键词:Multivalued differential equations; existence; selection theorem of Bressan and Colombo; Schauder fixed point theorem.;
摘要:多值微分方程是非线性分析理论的一个重要分支,它在工程、经济、最优控制及最优化理论等领域有着广泛的应用.因此,对多值微分方程的研究具有重要意义.本文在有限维空间R上,借助于Bressan-Colom-bo连续选择定理和Schauder不动点定理,在多值函数非凸值的情形下建立了二阶多值微分方程三点边值问题x″∈F(t,x,x)′,a.e.t∈[0,1]x(′0)=0,x(1)=αx(ηη)(1.1)解的存在性,其中F是一个满足L1-Caratheodory条件的多值函数,α≠1,0<η<1.
Multivalued functional differential equations are an important branch in the theory of nonlinear analysis,which have wide applications in many fields such as engineering,economics,optimal control and optimization theory.Therefore,it is significant to study the existence of multivalued functional differential equations. This paper is discussed the existence of three-point boundary second order multivalued differential equation.Our main results are based upon Schauder fixed point theorem combined with a selec...
参考文献:
正在载入数据...