详细信息
基于KVL方程的电池剩余放电时间预测模型 被引量:1
The Battery Residual Discharge Time Prediction Model Based on the KVL Equation
文献类型:期刊文献
中文题名:基于KVL方程的电池剩余放电时间预测模型
英文题名:The Battery Residual Discharge Time Prediction Model Based on the KVL Equation
作者:纪小玲[1]
第一作者:纪小玲
机构:[1]定西师范高等专科学校数学系,甘肃定西743000
第一机构:甘肃中医药大学定西校区
年份:2017
卷号:22
期号:6
起止页码:31
中文期刊名:甘肃高师学报
外文期刊名:Journal of Gansu Normal Colleges
收录:国家哲学社会科学学术期刊数据库
基金:定西师范高等专科学校一般项目"基于最优化理论的甘肃省基层中医药的需求;发展现状及对策研究"(TD2016YB10)
语种:中文
中文关键词:铅蓄电池;KVL定律;李普希茨条件;剩余放电时间
外文关键词:lead-acid battery;KVL law; Lipschitz condition;residual discharge time
摘要:介绍了铅酸电池剩余放电时间的综合分析模型,模型建立在大量监测数据的基础上,利用KVL(即基尔霍夫)定律,结合微分方程,建立数学模型,利用Mathematica数学软件绘出各放电曲线.并计算出在新电池使用中,分别以30A、40A、50A、55A,60A和70A电流强度放电时,电池的剩余放电时间分别是2454min、1723 min、1307 min、1098 min、1041 min、855 min.给出了电流强度为55A时的放电曲线和电压变化的数据.分析了各放电曲线的平均相对误差,误差最低达到了0.0527%.该模型经过大量的数据验证,得出了较高准确度的剩余放电时间,可以实时准确地预测后备铅蓄电池在电源故障情况下的供电能力.
This paper introduces the comprehensive analysis model of lead-acid battery discharging time remaining, the model is es- tablished on the basis of a large number of monitoring data, using KVL (i.e., kirchhof0 law, combining with the differential equation, mathematical model is set up, using mathematical software Mathematica draw the discharge curve: see the chart 1 and chart 2 and chart 3, chart 4, chart 5, chart, graph 7 and graph 8, 6 chart 9. In the new battery, and calculated respectively at 30, 40, a 55 a, a, a, 50 to 60 a and 70 a discharge current intensity, the remainder of the battery discharge time were 2454 min, 1723 min, 1307 min, 1098 min, 1041 min, 855 min. At the same time gives the current strength for 55 when a discharge curve chart data table 2 of 10 and voltage change. Finally, analyzed the average relative error of each discharge curve error minimum reached 0.0527% after a large amount of data verification, the model obtained the higher accuracy of residual discharge schedule one and three, can accurately pre- dict real-time backup lead battery power supply capacity in the case of power failure.
参考文献:
正在载入数据...