详细信息
文献类型:期刊文献
中文题名:对数列{(1+1/n)n}单调有界性证法的欣赏
英文题名:Enjoy the Boundedness of the Sequence Monotone Syndrome
作者:纪小玲[1]
第一作者:纪小玲
机构:[1]定西师范高等专科学校数学系,甘肃定西743000
第一机构:甘肃中医药大学定西校区
年份:2014
卷号:19
期号:5
起止页码:53
中文期刊名:甘肃高师学报
外文期刊名:Journal of Gansu Normal Colleges
收录:国家哲学社会科学学术期刊数据库
语种:中文
中文关键词:二项式展开;Bernoulli不等式;均值不等式
外文关键词:binomial expansion;;Bernoulli inequality;;mean inequality
摘要:数学分析中单调有界定理告诉我们,在实数系中,有界的单调数列必有极限.所以只要证得数列{(1+1/n)n}是单调有界的,就能说明它的极限存在.文章给出了五种不同的方法来证明它的单调有界性.每一种方法都有它自身的特点.
The mathematical analysis of monotone bounded theorem tells us that, in the real system, a monotone sequence circles have limit. So as long as attain sequence is monotone bounded, can explain its limit. In this paper, five different methods to prove its monotonic boundedness. Every method has its Own characteristics.
参考文献:
正在载入数据...