详细信息

ARIMA预测模型在甘肃省其他感染性腹泻发病预测中的应用     被引量:6

Application of ARIMA prediction model in forecasting the incidence of other infectious diarrhea in Gansu Province

文献类型:期刊文献

中文题名:ARIMA预测模型在甘肃省其他感染性腹泻发病预测中的应用

英文题名:Application of ARIMA prediction model in forecasting the incidence of other infectious diarrhea in Gansu Province

作者:刘希波[1];曹静[1];王云[1];李明阳[1];王淑霞[1];胡继宏[2]

第一作者:刘希波

机构:[1]甘肃中医药大学公共卫生学院,甘肃兰州730000;[2]甘肃中医药大学科研实验中心,甘肃兰州730000

第一机构:甘肃中医药大学公共卫生学院

年份:2021

卷号:28

期号:1

起止页码:113

中文期刊名:实用预防医学

外文期刊名:Practical Preventive Medicine

收录:CSTPCD

基金:甘肃中医药大学研究生创新基金(CX2019-46)。

语种:中文

中文关键词:ARIMA;预测模型;其他感染性腹泻

外文关键词:autoregressive integrated moving average(ARIMA);prediction model;other infectious diarrhea

摘要:目的建立并评价甘肃省其他感染性腹泻发病的ARIMA预测模型。方法利用2010—2018年甘肃省其他感染性腹泻的发病数据建立ARIMA预测模型,同时利用2019年发病数据评价模型并对2020年甘肃省其他感染性腹泻发病进行预测。结果根据模型拟合效果,模型ARIMA(0,1,1)(1,1,0)12为最优模型。R^2=0.741,Ljung-Box检验值为25.944,BIC值为11.060。模型拟合甘肃省其他感染性腹泻的发病趋势与实际发病趋势一致,MAPE=17.297%,预测结果显示2020年甘肃省其他感染性腹泻发病时间分布与往年趋于一致。结论ARIMA(0,1,1)(1,1,0)12模型能较好地拟合甘肃省其他感染性腹泻的发病趋势,对该病的预防控制、风险评估等具有一定的公共卫生意义。
Objective To establish an autoregressive integrated moving average(ARIMA)prediction model in predicting the incidence of other infectious diarrhea in Gansu Province,and to evaluate its prediction effect.Methods Data regarding the incidence of other infectious diarrhea in Gansu Province from 2010 to 2018 were used to establish an ARIMA prediction model.At the same time,data about the incidence of other infectious diarrhea in 2019 were applied to evaluating the model,and the incidence of other infectious diarrhea in Gansu Province in 2020 was forecasted.Results The ARIMA(0,1,1)(1,1,0)12 model was supposed to be the best fitted model.The value of R^2 was 0.741,the value of Ljung-Box Q statistic was 25.944,and BIC value was 11.060.The model fitted the incidence trend of other infectious diarrhea in Gansu Province,which was consistent with the actual incidence trend,and the mean absolute percentage error(MAPE)was 17.297%.The predicted results revealed that the time distribution of incidence of other infectious diarrhea in Gansu Province in 2020 tended to be similar to that of previous years.Conclusions The data predicted by the ARIMA(0,1,1)(1,1,0)12 model can fit well with the incidence trend of other infectious diarrhea in Gansu Province,and the model has certain public health significance in prevention,control and risk assessment of other infectious diarrhea.

参考文献:

正在载入数据...

版权所有©甘肃中医药大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心