详细信息
单点生成的n维线性图形中图元的个数
The Number of Graphic Elements in N-dimensions Linear Graph Generated by Single-point
文献类型:期刊文献
中文题名:单点生成的n维线性图形中图元的个数
英文题名:The Number of Graphic Elements in N-dimensions Linear Graph Generated by Single-point
作者:姜学杰[1]
第一作者:姜学杰
机构:[1]定西师范高等专科学校数学系,甘肃定西743000
第一机构:甘肃中医药大学定西校区
年份:2016
卷号:21
期号:6
起止页码:5
中文期刊名:甘肃高师学报
外文期刊名:Journal of Gansu Normal Colleges
收录:国家哲学社会科学学术期刊数据库
语种:中文
中文关键词:n维线性图形;图元;二项式定理;欧拉定理
外文关键词:N-dimensional linear graphics ; graphic-element; Binomial theorem ; euler' s theorem
摘要:n维线性图形由点、线段、三角形、四面体等基本图元构成,由单点构成的n维线性图形其各类图元的个数及图元总数与二项式系数有密切的关系.用二项式定理可以证明,在n维线性图形中多面体欧拉定理也成立.
N-dimensional linear graph is constructed by the graphic elements such as points, lines, triangles, tetrahedrons, etc. In a n- dimensions linear graph generated by single-point,the number of all kinds of graphic elements and the total number of graphic- elements has close relationship with binomial coefficient. Using binomial theorem can be proved that the Euler's polyhedron theorem in a n-dimensional linear graph generated by single-point is established.
参考文献:
正在载入数据...