详细信息

超限邻域平均算法在肺部CT图像除噪中的应用     被引量:1

Application of Lungs CT Image Denoising with Overlimit Neighborhood Average Algorithm

文献类型:期刊文献

中文题名:超限邻域平均算法在肺部CT图像除噪中的应用

英文题名:Application of Lungs CT Image Denoising with Overlimit Neighborhood Average Algorithm

作者:张永刚[1]

第一作者:张永刚

机构:[1]甘肃中医药大学,甘肃定西743000

第一机构:甘肃中医药大学

年份:2022

卷号:31

期号:2

起止页码:47

中文期刊名:中央民族大学学报(自然科学版)

外文期刊名:Journal of Minzu University of China(Natural Sciences Edition)

基金:甘肃省科技计划资助项目(20JR10RA327)。

语种:中文

中文关键词:肺部CT图像;超限邻域;平均算法;除噪声;作用区域

外文关键词:lungs CT images;overlimit neighborhood;average algorithm;denoising;area of action

摘要:本文针对含有高密度椒盐和高斯噪声的肺部CT图像除噪中细节信息保留不够,图像较模糊、清晰度欠佳等问题,提出了一种超限邻域平均算法,该方法首先通过阈值策略法对指定邻域内像素加权均值与其中任一像素灰度值大小进行比较判断,然后将大于阈值的像素剔除,而小的作为有用信息输出,最后运用该方法对含有高密度椒盐和高斯噪声的医学影像图像进行除噪实现设计。仿真实验表明,超限邻域平均算法对肺部CT图像的高密度椒盐和高斯噪声抑制力强,计算速度快,峰值信噪比(PSNR)比单纯中值和均值算法大,而均方根误差(RMSE)小,且去噪后的图像具有良好的细节保真度和清晰度。
To deal with the problem of medical CT images with high density noise, poor definition, an over-limit neighborhood averaging algorithm was proposed.The method compared the weighted mean of designated pixel with any pixel gray value by threshold strategy, then removed the pixels larger than the threshold, took the small output as useful information, and finally designed the medical imagimg with high-density salt and pepper noise, and Gaussian noise.Simulation experiments showed that the over-limit neighborhood average algorithm had strong high density noise salt and pepper, and Gaussian noise suppression on lung CT images, fast computation. Peak signal to noise ratio(PSNR) was larger than pure median and mean algorithm, smaller root mean square error(RMSE), and the denoising image had good detail fidelity and clarity.

参考文献:

正在载入数据...

版权所有©甘肃中医药大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心