详细信息
一类共振二阶系统周期解的存在性 被引量:1
Existence of periodic solutions of a class of second order systems at resonance
文献类型:期刊文献
中文题名:一类共振二阶系统周期解的存在性
英文题名:Existence of periodic solutions of a class of second order systems at resonance
作者:王世钦[1];安玉坤[2]
第一作者:王世钦
机构:[1]甘肃中医学院公共课部,甘肃兰州730000;[2]西北师范大学数学与信息科学学院,甘肃兰州730070
第一机构:甘肃中医药大学
年份:2002
卷号:38
期号:2
起止页码:22
中文期刊名:兰州大学学报(自然科学版)
外文期刊名:Journal of Lanzhou University(Natural Sciences)
收录:CSTPCD;;Scopus;北大核心:【北大核心2000】;CSCD:【CSCD2011_2012】;
语种:中文
中文关键词:共振二阶系统;周期解;存在性;鞍点定理;变分方法;特征值;特征函数
外文关键词:second order system; resonance; periodic solution; existence; saddle point theorem
摘要:讨论共振二阶系统u(t) + Au(t) - F(t,u(t) ) =0 , a.e. t∈ (0 ,2π)u(0 ) - u(2π) =u. (0 ) - u. (2π) =0周期解的存在性 .当假定矩阵 A是普通对称矩阵 ,有特征值 k2 (k为整数 )时 ,在 F (t,u(t) )满足适当的条件下 ,利用变分方法 。
This paper deals with the periodic solutions of a class of second order systems at resonance as follows (t)+Au(t)-F(t,u(t))=0, a.e. t∈(0,2π), u(0)-u(2π)=u·(0)-u·(2π)=0. With the variational method,the existence of periodic solutions is obtained for the problem when the symmetric matrix A has eigenvalue k 2(b be integer) and F(t,u(t)) satisfies the suitable conditions.
参考文献:
正在载入数据...