详细信息
基于AHP和BPNN结合模型优化当归烟熏加工工艺 被引量:12
Optimization of smoked processing technology of Angelicae Sinensis Radix based on an AHP combined with BPNN model
文献类型:期刊文献
中文题名:基于AHP和BPNN结合模型优化当归烟熏加工工艺
英文题名:Optimization of smoked processing technology of Angelicae Sinensis Radix based on an AHP combined with BPNN model
作者:顾志荣[1];潘新波[1];王亚丽[1,2];孙宇靖[1]
第一作者:顾志荣
机构:[1]甘肃中医学院当归研究所,兰州730000;[2]甘肃中医学院科研实验中心,兰州730000
第一机构:甘肃中医药大学药学院(西北中藏药协同创新中心办公室)
年份:2014
卷号:23
期号:22
起止页码:2664
中文期刊名:中国新药杂志
外文期刊名:Chinese Journal of New Drugs
收录:CSTPCD;;Scopus;北大核心:【北大核心2011】;CSCD:【CSCD_E2013_2014】;
基金:国家自然科学基金(30960037);甘肃省发改委战略新兴产业和产业技术研究与开发专项项目(2011)
语种:中文
中文关键词:当归;层次分析;反向传播人工神经网络;烟熏加工;高效液相色谱
外文关键词:Angelicae Sinensis Radix; analytic hierarchy process; back-propagation neural network; smoked processing; HPLC
摘要:目的:建立不同烟熏条件加工当归的层次分析(AHP)和反向传播人工神经网络(BPNN)结合模型,优化当归烟熏加工工艺。方法:测定烟熏当归药材中5种指标性化学成分(阿魏酸、Z-藁本内酯、正丁基苯酞、正丁烯基苯酞、亚油酸)以及醇溶性浸出物含量,采用建立的AHP与BPNN结合模型优化当归烟熏加工工艺。结果:AHP模型优化工艺为50℃烟熏8 h,AHP与BPNN结合模型优化工艺为46.5℃烟熏8.8 h,后者工艺优于前者。结论:AHP与BPNN结合模型优化的当归烟熏工艺有利于减少能耗及保存有效成分,有一定实用价值。
Objective: To establish an analytic hierarchy process (AHP) combined with back-propagation neural network (BPNN) model for preparing smoked Angelicae Sinensis Radix by different processing conditions, and to optimize the smoked processing technology. Methods: Five index chemical compositions (ferulic acid, Z-li- gustilide, 3-butylphthalide, n-butylidenephthalide and linolic acid) and ethanol-soluble extracts from Angelicae Sinensis Radix were determined, and the established AHP combined with BPNN model was used for optimization of smoked processing technology. Results: Optimum smoked processing technology by the AHP model was smoking for 8 hours at 50 ℃ , and that by the AHP combined with BPNN model was smoking for 8.8 hours at 46.5℃. The latter was superior to the former. Conclusion: The optimum smoked processing technology by the AHP combined with BPNN model is practically valuable, which is helpful to reduce energy consumption and save effective compo- nents.
参考文献:
正在载入数据...